Meine Merkliste Geteilte Merkliste PDF oder EPUB erstellen

Umfragen und Prognosen bei US-Wahlen | USA | bpb.de

USA Geschichte Eine Nation entsteht Bürgerkrieg und Sklaverei Die USA betreten die Weltbühne 2. Weltkrieg John F. Kennedy Kalter Krieg Vietnamkrieg Reagan Jahre Die USA unter Georg W. Bush Ostdeutsche Sichtweisen auf die USA Recht auf Land: Indigene Gesellschaften und der Siedlerkolonialismus Politik Einführung: Die USA sind anders Präsidialdemokratie Exekutive Kongress Besonderheiten des Rechtssystems US-Föderalismus Parteien und Verbände Außenpolitik Grundlagen des politischen Systems Wahl- und Parteiensystem Migrations- und Wirtschaftspolitik an der Grenze zu Mexiko "Nahezu jede neue Wahlkreiskarte wird vor Gericht angefochten" Kongresswahlen 2022 – mehr als ein Votum zu Bidens Agenda Trumps Erbe Die USA zwischen Internationalismus und Isolationismus Energiepolitik unter Biden Wirtschaft Strukturwandel in Pittsburgh Deindustrialisierung und High-Tech in den USA Finanzkrise Corporate America Gesellschaft und Kultur Bildungssystem Gesundheitssystem Schwarzes Amerika Religion Hollywood Literatur Musik Getrennte Klassenzimmer Erinnerungskultur zwischen Hegemonialgeschichte und Pluralismus Das Thema "race" erschüttert das politische System immer wieder Black Lives Matter – eine Bestandsaufnahme Männlichkeitsbilder im Krieg gegen die Ukraine US-Präsidentschaftswahlen US-Präsidentschaftswahl 2024 Strategien und mediale Aufmerksamkeit im US-Wahlkampf KI und Wahlen: Brennpunkt USA Umfragen und Prognosen bei US-Wahlen Rechtsverfahren gegen Trump Die Präsidentschaft von Joe Biden Kurzportrait: Kamala Harris Kurzportrait: Donald Trump Kurzportrait: Joe Biden US-Präsidentschaftswahl 2020 Eine US-Wahl für die Geschichtsbücher IT-Sicherheit im US-Wahlkampf Wahlkampfthemen der Demokraten Social-Media-Plattformen im US-Wahlkampf Hindernisse auf dem Weg zur Wahl FAQ Kurzportraits Kandidaten Politische und gesellschaftliche Polarisierung in den USA Wahlkampfthemen der Republikaner Die Demokratische Partei und ihr Kandidat Geld im US-Wahlkampf US-Wahlkampf in Zeiten des Coronavirus Die gescheiterte Amtsenthebung von Präsident Trump Regierungsbilanz: 4 Jahre Donald Trump US-Präsidentschaftswahl 2016 Hillary Rodham Clinton Donald Trump Vom Wahlkampf erschöpft Rückblick Barack Obama Über die Polarisierung in den USA Über die Arbeit eines US-Korrespondenten Die USA nach den Präsidentschaftswahlen US-Präsident Trump - Kontinuität oder Zeitenwende? FAQ Quiz Zahlen und Fakten Archiv Amerika kommt auf Deutschland zu Außenpolitische Positionen 2008 Medien in den USA Internet Erfolgsstory Silicon Valley Grüne Gentechnik Sorgenvoller Blick nach China Redaktion

Umfragen und Prognosen bei US-Wahlen

Andreas Graefe

/ 7 Minuten zu lesen

Wahlumfragen nehmen in der Berichterstattung über die US-Präsidentschaftswahlen einen prominenten Platz ein – auch wenn sie in der Vergangenheit zu bedeutenden Fehleinschätzungen geführt haben. Doch inwieweit unterscheiden sich Wahlumfragen von tatsächlichen Prognosemodellen, und welche unterschiedlichen Methoden der Wahlvorhersage gibt es?

Der US-Hörfunk- und Fernsehsender NBC berichtet über die Wahlumfragen im Vorhinein der US-Präsidentschaftswahlen 2024. (© Igor Golovniov/SOPA Images via ZUMA Press Wire)

Die Interner Link: US-Präsidentschaftswahl 2016 war für die Prognosebranche ein Erfolg und ein Misserfolg zugleich. Fast alle Prognosen sagten voraus, dass Hillary Clinton mehr Stimmen als Interner Link: Donald Trump erhalten würde. Tatsächlich erhielt Clinton fast 3.000.000 Stimmen mehr als Trump und gewann damit den sogenannten Popular Vote. Allerdings entscheidet in den USA nicht die Mehrheit der Wählerstimmen, wer Präsident wird, sondern das Interner Link: Electoral College. Zwar gab es in der Geschichte der USA nur in fünf von 59 Wahlen eine Diskrepanz zwischen Popular Vote und Electoral Vote – aber 2016 war einer dieser Fälle. Mit insgesamt weniger als 80.000 Wählerstimmen Vorsprung gewann Trump die umkämpften Staaten Wisconsin, Michigan und Pennsylvania und somit die Stimmen der kombiniert 46 Wahlmänner aus diesen drei Staaten. Letztlich konnte er sich so im Electoral College mit 306 zu 232 Stimmen durchzusetzen.

Die Genauigkeit von Wahlumfragen

Der Wahlsieg von Donald Trump kam überraschend. Selbst die für ihn günstigsten Prognosen sahen seine Chancen auf einen Wahlsieg nur bei rund 30 Prozent. Grund dafür waren erhebliche Fehler in den Umfrageergebnissen. Bis heute gilt die US-Wahl 2016 als Beispiel für das Versagen von Wahlumfragen, dabei lagen die Umfragen bei der Interner Link: US-Präsidentschaftswahl 2020 noch weiter daneben. Laut einem Bericht der American Association for Public Opinion Research (AAPOR) waren die Abweichungen zwischen Umfragewerten und Wahlergebnis bei den landesweiten Umfragen im Wahljahr 2020 die größten seit vier Jahrzehnten und auf der Ebene der Bundesstaaten die größten seit mindestens zwei Jahrzehnten. Der Grund dafür, dass viele Beobachter das Scheitern der Umfragen 2020 nicht so präsent haben, liegt schlicht darin, dass die Fehlermarge nicht wahlentscheidend war. Interner Link: Joe Biden wurde in den Umfragen zwar drastisch überschätzt, für seinen Wahlsieg war das letztlich jedoch irrelevant.

Interessanterweise konnte auch die AAPOR nicht herausfinden, was genau diese große Fehleinschätzung verursacht hat. Da somit auch nicht klar ist, wie das Problem gelöst werden kann, kamen einige Analysten zu dem Schluss, dass „Umfragen nicht mehr funktionieren.“

Alternative Methoden der Wahlvorhersage

Dabei liefern Umfragen keine Prognosen im eigentlichen Sinne. Sie erfassen die Wahlpräferenzen der Befragten zu einem bestimmten Zeitpunkt, die sich bis zur Wahl noch ändern können. Es ist daher nicht verwunderlich, dass Umfrageergebnisse häufig starken Schwankungen unterliegen. Insbesondere bei einem weit in der Zukunft liegenden Wahltag können die Ergebnisse erheblich von den tatsächlichen Wahlergebnissen abweichen.

Problematisch sind auch systematische Fehler, beispielsweise wenn bestimmte Wählergruppen nicht erreicht werden können oder die Wahlbeteiligung bestimmter Gruppen falsch eingeschätzt wird. Die Umfragefehler von 2016 waren teilweise darauf zurückzuführen, dass das Bildungsniveau der Befragten nicht angemessen berücksichtigt wurde. Höher gebildete Wähler, die eher Hillary Clinton unterstützten, waren in den Umfragen überrepräsentiert, insbesondere in den wichtigen Staaten des Mittleren Westens, wo ein großer Anteil der Wähler weiße Männer ohne Hochschulabschluss waren. Dies führte zu einer Überschätzung von Clintons Unterstützung.

Allerdings existieren Methoden, welche wesentlich exaktere Prognosen ermöglichen als dies durch Umfragen der Fall ist. Diese Methoden, welche teilweise Umfragedaten mit einbeziehen, lassen sich grob in modell- und erwartungsbasierte Verfahren unterteilen.

  • Modellbasierte Verfahren

Prognosemodelle verwenden historische Daten, um Wahlergebnisse vorherzusagen. Die Auswahl der Variablen, die in das Modell eingehen, hängt von der zugrunde liegenden Wahltheorie ab, die retrospektiv, prospektiv oder eine Kombination aus beiden sein kann. Fast alle Modelle verwenden in irgendeiner Form Umfragedaten.

Retrospektive Modelle gehen davon aus, dass die Wähler die Amtsinhaber auf der Grundlage ihrer bisherigen Leistungen beurteilen und sie entsprechend belohnen oder bestrafen. Diese Modelle verwenden aggregierte ökonomische (zum Beispiel Bruttoinlandsprodukt, Inflation) oder politische Fundamentaldaten (zum Beispiel wie lange eine Partei an der Macht ist), manchmal kombiniert mit retrospektiven Umfragedaten (Popularität des Amtsinhabers).

Prospektive Modelle hingegen gehen davon aus, dass die Wähler zukunftsorientiert sind und die Kandidaten und ihre Wahlprogramme nach ihren Stärken und Schwächen beurteilen. Diese Modelle verwenden Informationen darüber, wie die Wähler die Persönlichkeit der Kandidaten wahrnehmen oder ihre Fähigkeit, die Probleme des Landes zu lösen.

Verbreiteter sind jedoch Modelle, die retrospektive und prospektive Elemente kombinieren, also sowohl Fundamentaldaten als auch Wahlumfragen verwenden. Diese gemischten Modelle sind wegen ihrer hohen Genauigkeit beliebt, bieten aber nur eine begrenzte Erklärungskraft, da sie die kombinierten Effekte von wirtschaftlichen Fundamentaldaten und öffentlichen Meinungen berücksichtigen.

  • Erwartungsbasierte Verfahren

Individuelle Einschätzungen und Erwartungen sind oft ein wesentlicher Bestandteil von Prognosen, sei es in der Entwicklung von Prognosemodellen (zum Beispiel bei der Auswahl der zu verwendenden Daten oder Variablen) oder als direkte Prognose. Derartiges Urteilsvermögen kann hilfreich sein, wenn es darum geht, die Auswirkungen ungewöhnlicher Ereignisse (zum Beispiel einer Pandemie, oder eines außergewöhnlichen Kandidaten) zu beurteilen, welche statistische Modelle möglicherweise nicht erfassen können. Eine große Herausforderung bei der Verwendung von Urteilsvermögen besteht jedoch darin, kognitive Verzerrungen zu vermeiden, die bei Prognosen häufig und oft unbewusst auftreten können.

Die wohl älteste Methode zur Erstellung erwartungsbasierter Wahlprognosen besteht darin, Experten zu fragen, was passieren wird. Man geht davon aus, dass Experten Umfragedaten kontextualisieren, Kampagnenereignisse berücksichtigen und historische Perspektiven bieten können. Forschungsergebnisse zeigen jedoch, dass Experteneinschätzungen nicht unbedingt genauer sind als Umfrageergebnisse.

Ein weiterer Ansatz ist sogenanntes Crowd Forecasting, bei dem die Vorhersagen einer Gruppe von Individuen aggregiert werden. Beispiele hierfür sind Wettmärkte und Crowdsourcing-Webseiten. Die selbstselektierten Teilnehmer haben oft einen Anreiz, genaue Prognosen abzugeben, sei es durch monetäre Einsätze oder durch Ranglisten der besten Teilnehmer.

Bürgerprognosen funktionieren ähnlich, aber einfacher. Hier wird in repräsentativen Wahlumfragen nicht nur gefragt, wem die Befragten ihre Stimme geben würden, sondern auch, wem sie zutrauen, die Wahl zu gewinnen. Diese simple Methode hat sich in historischen Analysen im Vergleich zu anderen Vorhersagemethoden als besonders genau erwiesen.

Es gibt nicht die eine beste Methode

Eine der wichtigsten Lehren aus mehr als fünfzig Jahren Prognoseforschung ist, sich nicht auf eine einzige Prognose zu verlassen, sondern verschiedene Prognosen zu kombinieren, die idealerweise auf unterschiedlichen Methoden beruhen und unterschiedliche Informationen nutzen. Dieser Ansatz hat mehrere Vorteile.

  1. Eine einzelne Prognose kann in der Regel nicht alle relevanten Informationen erfassen. Dies gilt insbesondere für Prognosemodelle, da die Anzahl der Variablen, die in ein Modell eingehen können, begrenzt ist. Werden hier wichtige Informationen nicht berücksichtigt (wie beispielsweise das Alter der Kandidaten), kann dies zu großen Prognosefehlern führen. Durch die Kombination verschiedener Methoden und Informationsquellen können mehr Informationen berücksichtigt werden, was das Risiko großer Prognosefehler verringert.

  2. Bei der Suche nach der optimalen Lösung, der besten Prognose, scheint es naheliegend, den Prognosen zu vertrauen, die auch in der Vergangenheit zutreffende Vorhersagen geliefert haben. Analysen historischer Daten zeigen jedoch, dass die relative Genauigkeit verschiedener Prognosemethoden von Wahl zu Wahl erheblich schwankt. Nicht selten liefert eine Methode, die bei der letzten Wahl besonders gut funktioniert hat, bei der nächsten Wahl vergleichsweise ungenaue Vorhersagen. Die Kombination von Prognosen schützt davor, einer einzelnen Prognose zu vertrauen, welche sich als möglicherweise sehr ungenau herausstellen könnte.

  3. Bei der Vorhersage einer Wahl liefert die kombinierte Prognose immer mindestens so genaue Vorhersagen wie eine durchschnittliche Prognose. Da aber die Genauigkeit der Einzelprognosen von Wahl zu Wahl schwankt, liefert die kombinierte Prognose langfristig oft bessere Vorhersagen als die beste Einzelprognose.

Wahlprognosen in der Medienberichterstattung

Obwohl Umfragen streng genommen keine Prognosen liefern und gerade in jüngerer Vergangenheit große Fehler aufwiesen, dominiert die Umfrageindustrie, mit einem geschätzten Umsatz von 8,5 Milliarden Dollar im Jahr 2024, weiterhin Interner Link: die Wahlberichterstattung in den USA. So gut wie alle großen US-Zeitungsverlage und -Fernsehsender beauftragen bei Forschungsinstituten oder Unternehmen ihre eigenen Wahlumfragen. Ein Grund hierfür ist die Eignung von Umfragen für den sogenannten "Horse-Race"-Journalismus. In diesem Kontext konzentriert sich die Berichterstattung auf die Frage, wer in den Umfragen gerade vorne liegt. Diese Form der Berichterstattung profitiert davon, dass aufgrund der oftmals starken Schwankungen in Umfragen fortlaufend neue Schlagzeilen generiert werden, die wiederum eine große Aufmerksamkeit generieren.

Modell- und erwartungsbasierte Verfahren liefern stabilere Prognosen und sind somit weniger geeignet für diese Art der spannungsgetriebenen Berichterstattung. Ein nicht unerheblicher Anteil dieser Prognosen wird im Rahmen von Forschungsprojekten generiert, deren Ziel es ist, Prognosemethoden zu validieren. Es lässt sich jedoch beobachten, dass auf Basis dieser Forschungsarbeiten auch erste kommerzielle Anwendungen entstehen. Dazu zählen sowohl modellbasierte Prognoseplattformen als auch erwartungsbasierte Wettbörsen, die sich wachsender Beliebtheit erfreuen.

Weitere Inhalte

USA

US-Präsidentschaftswahl 2024

Ob das Attentat auf Donald Trump, der Rückzug von Joe Biden oder der Start von Kamala Harris in das Rennen: Im US-Wahlkampf 2024 überschlugen sich die Ereignisse. Hier unsere Inhalte zum Thema.

USA

Kurzportrait: Kamala Harris

Die neue Spitzenkandidatin der Demokratischen Partei ist zwar verspätet, dafür umso erfolgreicher in den Präsidentschaftswahlkampf gestartet. Wofür steht die Vizepräsidentin der USA?

Artikel

Kurzportrait: Donald Trump

Trotz zahlreichen Kontroversen um seine Person wurde der ehemalige Präsident Donald J. Trump erneut zum Kandidaten der Republikanischen Partei für die Präsidentschaftswahlen 2024 gekürt.

Artikel

KI und Wahlen: Brennpunkt USA

Im Kontext der US-Präsidentschaftswahl werden KI-generierte Inhalte massiv verbreitet, oft zum Zweck von Desinformation. Inwieweit gefährdet das den demokratischen Prozess und wie wird dem begegnet?

Andreas Graefe ist diplomierter Volkswirt und Wirtschaftsinformatiker (Universität Regensburg) und promovierte an der Universität Karlsruhe (TH) in Wirtschaftswissenschaften. Nach Forschungspositionen am Karlsruher Institut für Technologie (KIT) und der LMU München war er Gastwissenschaftler an der University of Pennsylvania (Philadelphia) und der Columbia University (New York City). Seit 2015 ist er Professor für Management an der Hochschule Macromedia. Von 2021-2023 war er Vorsitzender der Political Forecasting Group der American Political Science Association (APSA). Er ist Projektleiter des nicht-kommerziellen Forschungsprojekts PollyVote, das Erkenntnisse aus der allgemeinen Prognoseforschung auf Wahlprognosen anwendet.